1 /* 2 DSFML - The Simple and Fast Multimedia Library for D 3 4 Copyright (c) 2013 - 2015 Jeremy DeHaan (dehaan.jeremiah@gmail.com) 5 6 This software is provided 'as-is', without any express or implied warranty. 7 In no event will the authors be held liable for any damages arising from the use of this software. 8 9 Permission is granted to anyone to use this software for any purpose, including commercial applications, 10 and to alter it and redistribute it freely, subject to the following restrictions: 11 12 1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. 13 If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required. 14 15 2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software. 16 17 3. This notice may not be removed or altered from any source distribution 18 */ 19 20 module dsfml.graphics.transform; 21 22 import dsfml.system.vector2; 23 import dsfml.graphics.rect; 24 public import std.math; 25 26 27 /++ 28 + Define a 3x3 transform matrix. 29 + 30 + A Transform specifies how to translate, rotate, scale, shear, project, whatever things. 31 + 32 + In mathematical terms, it defines how to transform a coordinate system into another. 33 + 34 + For example, if you apply a rotation transform to a sprite, the result will be a rotated sprite. And anything that is transformed by this rotation transform will be rotated the same way, according to its initial position. 35 + 36 + Transforms are typically used for drawing. But they can also be used for any computation that requires to transform points between the local and global coordinate systems of an entity (like collision detection). 37 + 38 + Authors: Laurent Gomila, Jeremy DeHaan 39 + See_Also: http://www.sfml-dev.org/documentation/2.0/classsf_1_1Transform.php#details 40 +/ 41 struct Transform 42 { 43 float[9] m_matrix = [1.0f, 0.0f, 0.0f, 0.0f, 1.0f, 0.0f, 0.0f, 0.0f, 1.0f]; 44 45 /** 46 * Construct a 3x3 matrix. 47 * 48 * Params: 49 * a00 = Element (0, 0) of the matrix 50 * a01 = Element (0, 1) of the matrix 51 * a02 = Element (0, 2) of the matrix 52 * a10 = Element (1, 0) of the matrix 53 * a11 = Element (1, 1) of the matrix 54 * a12 = Element (1, 2) of the matrix 55 * a20 = Element (2, 0) of the matrix 56 * a21 = Element (2, 1) of the matrix 57 * a22 = Element (2, 2) of the matrix 58 */ 59 this(float a00, float a01, float a02, float a10, float a11, float a12, float a20, float a21, float a22) 60 { 61 m_matrix = [a00, a01, a02, a10, a11, a12, a20, a21, a22]; 62 } 63 64 this(float[9] newMatrix) 65 { 66 m_matrix = newMatrix.dup; 67 } 68 69 /** 70 * Return the inverse of the transform. 71 * 72 * If the inverse cannot be computed, an identity transform is returned. 73 * 74 * Returns: A new transform which is the inverse of self. 75 */ 76 Transform getInverse() const 77 { 78 float[9] temp; 79 sfTransform_getInverse(m_matrix.ptr,temp.ptr); 80 return Transform(temp); 81 } 82 83 /** 84 * Return the transform as a 4x4 matrix. 85 * 86 * This function returns a pointer to an array of 16 floats containing the transform elements as a 4x4 matrix, which is directly compatible with OpenGL functions. 87 * 88 * Returns: A 4x4 matrix. 89 */ 90 const(float)[] getMatrix() 91 { 92 static float[16] temp; 93 94 sfTransform_getMatrix(m_matrix.ptr, temp.ptr); 95 96 return temp.dup; 97 } 98 99 /** 100 * Combine the current transform with another one. 101 * 102 * The result is a transform that is equivalent to applying this followed by transform. Mathematically, it is equivalent to a matrix multiplication. 103 * 104 * Params: 105 * transform = Transform to combine with this one. 106 * 107 * Returns: Reference to this. 108 */ 109 void combine(Transform otherTransform) 110 { 111 sfTransform_combine(m_matrix.ptr, otherTransform.m_matrix.ptr); 112 } 113 114 /** 115 * Transform a 2D point. 116 * 117 * Params: 118 * x = X coordinate of the point to transform. 119 * y = Y coordinate of the point to transform. 120 * 121 * Returns: Transformed point. 122 */ 123 Vector2f transformPoint(Vector2f point) const 124 { 125 Vector2f temp; 126 sfTransform_transformPoint(m_matrix.ptr,point.x, point.y, &temp.x, &temp.y); 127 return temp; 128 } 129 130 /** 131 * Transform a rectangle. 132 * 133 * Since SFML doesn't provide support for oriented rectangles, the result of this function is always an axis-aligned rectangle. Which means that if the transform contains a rotation, the bounding rectangle of the transformed rectangle is returned. 134 * 135 * Params: 136 * rectangle = Rectangle to transform. 137 * 138 * Returns: Transformed rectangle. 139 */ 140 FloatRect transformRect(const(FloatRect) rect)const 141 { 142 FloatRect temp; 143 sfTransform_transformRect(m_matrix.ptr,rect.left, rect.top, rect.width, rect.height, &temp.left, &temp.top, &temp.width, &temp.height); 144 return temp; 145 } 146 147 //TODO: These functions should probably return this; like the documentation states. 148 /** 149 * Combine the current transform with a translation. 150 * 151 * This function returns a reference to this, so that calls can be chained. 152 * 153 * Params: 154 * offset = Translation offset to apply. 155 * 156 * Returns: this 157 */ 158 void translate(float x, float y) 159 { 160 sfTransform_translate(m_matrix.ptr, x, y); 161 } 162 163 /** 164 * Combine the current transform with a rotation. 165 * 166 * This function returns a reference to this, so that calls can be chained. 167 * 168 * Params: 169 * angle = Rotation angle, in degrees. 170 * 171 * Returns: this 172 */ 173 void rotate(float angle) 174 { 175 sfTransform_rotate(m_matrix.ptr, angle); 176 } 177 178 /** 179 * Combine the current transform with a rotation. 180 * 181 * The center of rotation is provided for convenience as a second argument, so that you can build rotations around arbitrary points more easily (and efficiently) than the usual translate(-center).rotate(angle).translate(center). 182 * 183 * This function returns a reference to this, so that calls can be chained. 184 * 185 * Params: 186 * angle = Rotation angle, in degrees. 187 * center = Center of rotation 188 * 189 * Returns: this 190 */ 191 void rotate(float angle, float centerX, float centerY) 192 { 193 sfTransform_rotateWithCenter(m_matrix.ptr, angle, centerX, centerY); 194 } 195 196 /** 197 * Combine the current transform with a scaling. 198 * 199 * This function returns a reference to this, so that calls can be chained. 200 * 201 * Params: 202 * scaleX = Scaling factor on the X-axis. 203 * scaleY = Scaling factor on the Y-axis. 204 * 205 * Returns: this 206 */ 207 void scale(float scaleX, float scaleY) 208 { 209 sfTransform_scale(m_matrix.ptr, scaleX, scaleY); 210 } 211 212 /** 213 * Combine the current transform with a scaling. 214 * 215 * The center of scaling is provided for convenience as a second argument, so that you can build scaling around arbitrary points more easily (and efficiently) than the usual translate(-center).scale(factors).translate(center). 216 * 217 * This function returns a reference to this, so that calls can be chained. 218 * 219 * Params: 220 * scaleX = Scaling factor on the X-axis. 221 * scaleY = Scaling factor on the Y-axis. 222 * centerX = X coordinate of the center of scaling 223 * centerY = Y coordinate of the center of scaling 224 * 225 * Returns: this 226 */ 227 void scale(float scaleX, float scaleY, float centerX, float centerY) 228 { 229 sfTransform_scaleWithCenter(m_matrix.ptr, scaleX, scaleY, centerX, centerY); 230 } 231 232 string toString() 233 { 234 return "";//text(InternalsfTransform.matrix); 235 } 236 237 Transform opBinary(string op)(Transform rhs) 238 if(op == "*") 239 { 240 Transform temp = this;//Transform(InternalsfTransform); 241 temp.combine(rhs); 242 return temp; 243 } 244 245 ref Transform opOpAssign(string op)(Transform rhs) 246 if(op == "*") 247 { 248 249 this.combine(rhs); 250 return this; 251 } 252 253 Transform opBinary(string op)(Vector2f vector) 254 if(op == "*") 255 { 256 return transformPoint(vector); 257 } 258 259 /// Indentity transform (does nothing). 260 static const(Transform) Identity; 261 } 262 263 private extern(C): 264 265 //Return the 4x4 matrix of a transform 266 void sfTransform_getMatrix(const float* transform, float* matrix); 267 268 //Return the inverse of a transform 269 void sfTransform_getInverse(const float* transform, float* inverse); 270 271 //Apply a transform to a 2D point 272 void sfTransform_transformPoint(const float* transform, float xIn, float yIn, float* xOut, float* yOut); 273 274 //Apply a transform to a rectangle 275 void sfTransform_transformRect(const float* transform, float leftIn, float topIn, float widthIn, float heightIn, float* leftOut, float* topOut, float* widthOut, float* heightOut); 276 277 //Combine two transforms 278 void sfTransform_combine(float* transform, const float* other); 279 280 //Combine a transform with a translation 281 void sfTransform_translate(float* transform, float x, float y); 282 283 //Combine the current transform with a rotation 284 void sfTransform_rotate(float* transform, float angle); 285 286 //Combine the current transform with a rotation 287 void sfTransform_rotateWithCenter(float* transform, float angle, float centerX, float centerY); 288 289 //Combine the current transform with a scaling 290 void sfTransform_scale(float* transform, float scaleX, float scaleY); 291 292 //Combine the current transform with a scaling 293 void sfTransform_scaleWithCenter(float* transform, float scaleX, float scaleY, float centerX, float centerY); 294 295